
Chapter 5

A Formal Approach to Building Compositional

Agent-Based Simulations

Catholijn M. Jonker and Jan Treur

Why Read This Chapter? To be introduced to a more formal “computer-science”

style of simulation design, especially suited to simulations of multi-level systems

(e.g. firms, departments, and people).

Abstract This chapter is an introduction to a more formal approach to designing

agent-based simulations of organisations (in the widest sense). The basic method is

the iterative refinement of structure, process and knowledge, decomposing each

abstraction into near-decomposable components that can be (for the most part) then

considered separately. Within this over all framework there are two complementary

approaches: designing the organisation first, and designing the individual agents first.

5.1 Introduction

This chapter outlines a more formal approach to designing an agent system, in this

case an agent-based simulation. Its approach comes from computer science, and

shows how one can develop a design for a simulation model in a staged and

cautious manner. This is particularly appropriate when the simulation is complex,

requiring the interaction of complex and intelligent entities, and the intended design

of the model is essentially known or accessible. Thus it contrasts with and

complements the previous chapter describing more informal and exploratory

approaches to developing simulations (Norling et al. 2013).
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This chapter draws on approaches which were designed for engineering agent-

based software systems (e.g. air traffic control) and applies them to the engineering

of agent-based simulations since a simulation model is an example of a complex

piece of software. Such a cautious approach will result in the development of the

model taking more time and effort but also should result in a simulation model that

is easier to maintain and adapt and create fewer bugs, or simulations artefacts

(as described in Chap. 6, Galán et al. 2013).

The chapter is structured into three main sections, covering: compositional

design, organisations and agents. The section on compositional design is the most

general, and “works” for both the design of organisations and agents. However,

there is no need to reinvent the wheel – the sections on designing organisations and

agents raise more specific issues and aspects that experience has shown to be

helpful when designing simulations of these entities. Although they do not recapit-

ulate all in the section on compositional design they are essentially examples of that

general approach, though they each only concentrate on part of the overall process.

The differences are, roughly, that the organisational view starts with the

organisation, then the roles within that organisation, working “downwards”. It

highlights the constraints from above that organisations place on their members,

dealing with the nature of the agents after. The agent viewpoint starts with the

agents and their properties first and then moves on to how they interact (including

maybe as an organisation). Social phenomena often do involve both the “down-

ward” actions of constraint and “immergence” as well as the upwards actions of

emergence and collective outcomes. Thus both organisational and agent views are

often necessary to be explicitly considered in simulations.

5.2 Principles of Compositional Design of Multi-agent Systems

Although any principled design method can be used for the development of

simulations, we are concentrating in this chapter on those social systems which

are compositional in nature, since compositional actors are common in the social

world and this case also covers the principles in the simpler, non-compositional,

case. The principles described are quite general in nature, but will be illustrated

with respect to a particular compositional multi-agent development method, the

Design and Specification of Interacting Reasoning Components (DESIRE) (Brazier
et al. 1998).

The approach described here considers the design of autonomous interactive

agents and explicitly models both the intra-agent functionality and the inter-agent
functionality. Intra-agent functionality concerns the expertise required to perform

the tasks for which an agent is responsible in terms of the knowledge, and reasoning

and acting capabilities. The inter-agent functionality concerns the expertise

required to perform and guide co-ordination, co-operation and other forms of social

interaction in terms of knowledge, reasoning and acting capabilities.
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In the approach here described, both the individual agents and the overall system

are considered as compositional structures – hence all functionality is designed in

terms of interacting, compositionally structured components. Complex distributed

processes are the result of tasks performed by agents in interaction with their

environment.

The process starts at the most general, aggregate and abstract level, works in ever

increasing detail down through the specification of individual agents and finally the

code that determines their behaviour. At each stage there are a number of decisions

to be made, which correspond to specifying the features and properties that are

described below. The decisions at the higher levels help frame those made for the

next level, etc. until everything has been described. This should leave a documented

“trace” of the decisions that are made during the simulation design, that will help

with the description of the simulation and the explicit logging of assumptions made

during the design process.

Once this has been done and a roughly working simulation obtained, the verifi-

cation and validation procedure happens in the other direction, starting at testing

and validating the smallest processes and components and building upwards to

higher groups and units until the simulation as a whole has been checked.

5.2.1 The Design Process

The design of a multi-agent simulation is an iterative process, which aims at the

identification of the parties involved (i.e., human agents, system agents, external

worlds), and the processes, in addition to the types of knowledge needed. Initially

broad conceptual descriptions of specific processes and knowledge are attained.

Further explication of these conceptual design descriptions results in more detailed

design descriptions, most often in parallel with the development of the conceptual

design. During the design of these models, prototype implementations or parts or

sections of the overall model may be used to analyse or verify the resulting behaviour.

On the basis of examination of these partial prototypes, new designs and prototypes

are generated and examined, and so on and so forth. This evolutionary development
of systems is characteristic to the whole approach. Thus, as with any idealised design

methodology, in practice there is a lot of iterating back and forth between stages and

levels until a satisfactory design is obtained. The concepts presented in this chapter

are to help focus what might otherwise be an unstructured process.

We distinguish the following kinds of descriptions within the development

process:

• Problem description – Sect. 5.2.3

• Conceptual design – Sect. 5.2.4

• Detailed design – Sect. 5.2.4

• Design rationale – Sect. 5.2.5

• Operational design
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The problem description is a description of the target system to be simulated and

the main issues and questions to be investigated, this usually includes the

requirements imposed on the design – what the simulation must do to be useful

in this regard. Starting from the problem description, the design rationale specifies
the choices made during each of the levels of the design process, the reasons for

those choices, and the assumptions behind those choices that will impinge on its

use. In other words, the design rationale is the strategy for “solving” the problem
description using the design along with the reasons and justification for that

strategy.

The actual design process roughly proceeds from conceptual and abstract, down

to the more concrete until one has almost written the simulation code itself. The

conceptual design includes conceptual models (the main design ideas and

structures) for each entity in the model: the organisation, its roles and groups, the

individual agents, the external world, the interaction between agents, and the

interaction between agents and the external world. In a sense a conceptual design

could apply as much to a human who will have to fulfil a role as a programmed

agent, it does not concern itself with exactly how these aspects are to be achieved,

but more about how it relates to other key structures. The detailed design of a

system, based on the conceptual design, specifies all aspects of a system’s knowl-

edge and behaviour. It describes how the agent’s processes will achieve its role.

This can be thought of as the step where one is thinking about how a computational

agent might achieve what is described in the conceptual design, but it is probably

independent of which computer language, or system the agent is destined to be

implemented in. A detailed design is an adequate basis for the operational design,
which deals with some of the nitty-gritty of a specific implementation in a particular

system. It stops short of actual programming code, but would be enough for a

programmer to implement the system. This final stage will not be discussed in this

chapter since it will be different for each programming language or system that is

used to implement the final simulation.

The sequence tends to progress roughly from the conceptual towards the con-

crete, however this is only a general rule; there is no immutable sequence of design:

depending on the specific situation, different types of knowledge are available at

different points during system design which means that stages need to be iterated or

even that, at times, lower level necessities might drive the higher levels of design.

5.2.2 Compositionality of Processes and Knowledge

Compositionality is a general principle that refers to the use of components to

structure a design. This process of composition can be extended downwards as far

as it is useful, for example, components can themselves be compositional structures

in which a number of other, more specific components are grouped. During the

design all the components at the different levels are identified. Processes at each of

these levels (except the lowest level) are modelled as (process) components
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composed of entities at the level one lower to the process. Clearly this approach

depends upon the possibility of decomposing what is being modelled into separate

entities that are somewhat independent, so that the interaction of these components

can be considered in turn. In other words it is necessary that what is being modelled

is a near-decomposable system (Simon 1962). Although this is not always the case,

there are many social actors that, prima facie, are themselves composed of other

actors, for example political parties or firms. Thus this is often a reasonable

approach to take in the field of social simulation. Even when it is not clear that

what is being modelled does divide so neatly, then this method provides a system-

atic approach to attempting to identify and analyse those parts that are amenable to

design so that when they are all put together the desired behaviour will emerge from
their interaction during the simulation. Such emergence is an indication of non-

decomposability and can never be guaranteed – one has to find out by running the

simulation model, i.e. performing simulation experiments. If the desired behaviour

does not emerge then one has to try and work out the possible reasons for the failure

and go back to earlier stages of the design and rethink the approach.

In this compositional approach, each process within a multi-agent system may

be viewed as the result of interaction between more specific processes. A complete

multi-agent system may, for example, be seen to be one single component respon-

sible for the performance of the overall process. Within this one single component a

number of agent components within a common internal environment may be

distinguished, each responsible for a more specific process. Each agent component

may, in turn, have a number of internal components responsible for more specific

parts of this process. These components may themselves be composed, again

entailing interaction between other more specific processes.

The knowledge and information that is stored, produced, and communicated is

as important as the processes. The set of all terms, labels, types, structures etc. that

is used to encode and process the knowledge needed in a specific domain or for the

purposes of a particular agent may also be seen as a component, a knowledge
structure. This knowledge structure can be composed of a number of more specific

knowledge structures which, in turn, may again be composed of other even more

specific knowledge structures.

Compositionality of processes and compositionality of knowledge are two inde-

pendent dimensions of design. Thus a set of processes might be summarised as a

single process when appropriate or, in the other direction, broken down into a

system of sub-processes. The knowledge structures at one level might be adequate

for the purposes of the compositional processes or, maybe, a finer system of

description might be needed to be utilised by a finer grain of process representation.

For example, some simulations might represent the spread of beliefs through a

group as a simple contagion process, with simple entities representing the beliefs

and who has them. A finer grained model might include more of a cognitive

representation of the knowledge structures involved and how others are persuaded

to accept these as the result of a dialogue process.

Compositionality is a means to achieve information and process hiding within a

model: by defining processes and knowledge at different levels of abstraction,
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unnecessary detail can be hidden at those stages, allowing the broader

considerations to be considered separately from the component details. Clearly in

the realm of social simulation being able to satisfactorily express social processes

without always going down to the details is necessary if the resulting model is to be

feasible – clearly we cannot simulate social actors, going all the way down to the

atoms they are made of. Compositionality also makes it possible to integrate
different types of components in one agent, providing the structure and means by

which they work together.

5.2.3 Problem Description

There are many ways to write a problem description. Techniques vary in their

applicability, depending on, for example, the situation, the task, or the type of

knowledge on which the system developer wishes to focus. Therefore, no particular

method will be described here. However, whichever way the problem description is

developed it is crucial to capture the key requirements to be imposed on the system –

that is, what one wants to gain from building and using the simulation. These

requirements are part of the initial problem definition, but may also evolve during

the development of a system. Different simulations of the same phenomena might

well be appropriate because each might have different requirements. For example, a

simulation model to predict where queues will form on a certain stretch of motor-

way will probably be different from one to predict whether different proportions of

lorries might affect the throughput of traffic, even if both simulations are of traffic

on the same stretch of road at the same times.

5.2.4 Conceptual and Detailed Design

A conceptual and detailed design consists of specifications of the following three

types:

• Process composition;

• Knowledge composition;

• The relation between process composition and knowledge composition.

These are discussed in turn in more detail below.

5.2.4.1 Process Composition

Process composition identifies the relevant processes at different levels of (process)

abstraction, and describes how a process can be defined in terms of lower level

processes. Depending on the context in which a system is to be designed two

different approaches can be taken: a task perspective, or a multi-agent perspective.
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The task perspective refers to the approach, in which the processes needed to

perform an overall task are distinguished first, which are then delegated to appro-

priate agents and the external world. In this approach the agents and the external

world are designed later. The multi-agent perspective refers to the approach in

which agents and an external world are distinguished first and afterwards the

processes within each agent and within the external world.

Identification of Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the

processes for the multi-agent system as a whole, processes within individual agents

and the external world, processes within task-related components of individual

agents. Thus in a traffic simulation system processes might include the introduction

and removal of vehicles, the collection of statistics and the visualisations of the

system state; individual agents representing vehicles might have processes for

monitoring their speed and for deciding when to change lane; within these agents

might be a reactive component that monitors and adjusts the speed reacting when

other traffic gets too close, a learning component that remembers which lanes were

faster in the past, and a reasoning component that decides when to change lanes.

Relevant Aspects of a Process

The processes identified are modelled as components. For each process the types of
information used by it for input and resulting as output are identified and modelled

as input and output interfaces of the component (an interface is a protocol for the

information and maybe some specification of a process to deal with it, translating or

storing it). So in a traffic simulation the process in an agent may need the distance

and the relative speed of any object in its path to be passed to it as an input and the

reactions (accelerating, braking) may be passed as its outputs. Clearly in a simple

simulation these interfaces will be trivial, but in more complex simulations or

where a degree of modularity is required some effort in designing these interfaces

might well pay off.

Modelling Process Abstraction Levels

Each level of process is either an abstraction of lower levels of component and/or a

specialisation of the levels above. These layers of abstraction only go down so far

since processes are either composed of other components or they may be primitive.
Primitive components may be either reasoning components (for example based on a

knowledge base), or, alternatively, components capable of performing tasks such as

calculation, information retrieval, optimisation, etc.
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The identification of processes at different levels of abstraction results in the

specification of components that can be used as building blocks, and which

components are sub-components of which other component. The distinction of

different levels of process abstraction results in hiding detail from the processes

at the higher levels. Thus a process to decide whether to change lane in the traffic

example might be composed of a process to access the memory of how fast each

lane was in the past, an estimate of the average speed of the current lane, and how

fast the traffic ahead is moving.

Composition

The way in which processes at one level of abstraction in a system are composed of

processes at the adjacent lower abstraction level in the same system is called

composition. This composition of processes is described not only by the

component/sub-component relations, but in addition by the (possibilities for) infor-
mation exchange between processes (the static aspects), and task control knowledge
used to control processes and information exchange (the dynamic of the

composition).

Information Exchange

A specification of information exchange defines which types of information can be

transferred between components and the ways by which this can be achieved, called

information links. Within each of the components private information links are

defined to transfer information from one component to another. In addition,

mediating links are defined to transfer information from the input interfaces of

encompassing components to the input interfaces of the internal components, and to

transfer information from the output interfaces of the internal components to the

output interface of the encompassing components. That is the mediating links are

those which pass information “up” and “down” the structure of the agent: to their

components or up to the entity that they are a component of. Thus in the traffic

example there might well be mediating information links from each vehicle up to

the simulation to pass information about its current speed and position.

5.2.4.2 Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of

abstraction, and describes how a knowledge structure can be defined in terms of

lower level knowledge structures. The levels of knowledge abstraction may corre-

spond to the levels of process abstraction, but this is not necessarily the case.
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Identification of Knowledge Structures at Different Abstraction Levels

The two main structures used as building blocks to model knowledge are: informa-
tion types and knowledge bases. These knowledge structures can be identified and

described at different levels of abstraction. At the higher levels the details can be

hidden. The resulting levels of knowledge abstraction can be distinguished for both

information types and knowledge bases.

Information Types

An information type defines the sorts of terms that will be used describe objects or

other terms, their kinds, and the relations or functions that can be defined on these

objects.1 Information types can be specified in graphical form, or in formal textual

form. Thus the speed of objects is a type of knowledge in the traffic example,

relatable to other speeds in terms of relative speed.

Knowledge Bases

Knowledge bases are structured collections of information held by agents. The

specification of the knowledge bases use the information types just described. To

specify a knowledge base one needs to say which information types are used in as

well as the relationships between the concepts specified in the information types.

Thus in a (somewhat complex) driver memory there might be three kinds of

information: days of the week, times of the day, lane label and categories of

speed. Each lane might relate to a set of past occasions composed of day of the

week, time of day and speed category.

Composition of Knowledge Structures

Information types can be composed of more specific information types, following

the principle of compositionality discussed above. Similarly, knowledge bases can

be composed of more specific knowledge bases. Thus in the example of memory

about past lane speeds the sets of past occasions might be a list of limited size

ordered first by level of annoyance and secondly by recency.

5.2.4.3 Relation Between Process Composition and Knowledge Composition

Each process in a process composition uses knowledge structures. These will be

involved in the building and maintenance of the knowledge structures at their level,

but could involve knowledge structures from higher or, occasionally, lower levels.

1 Such sets of agreed terms are often called an “ontology” in computer science.
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So the processes that comprise the cognitive processes of a traffic agent might well

be involved in maintaining the memory of past lane speeds but might also relate to

the positional clues that are associated with the highest levels of the simulation.

5.2.5 Design Rationale

The design rationale is important because it makes explicit the reasoning “glue”

that underpins some of the other parts. Essentially it answers the question “given the
modelling target and goals why have the design decisions been made?” Thus it

describes the relevant properties of the design in relation to the requirements

identified in the problem description. It also documents the verification of the

design – that is how one will check that the implemented system does in fact
meet its specification, including the assumptions under which the desired properties

will hold. All the important design decisions are made explicit, together with some

of the alternative choices that could have been made, and the arguments in favour of

and against the different options. At the operational level the design rationale

includes decisions based on operational considerations, such as the choice to

implement an agent’s cognitive process in a particular way in order to make the

simulation run at a reasonable speed.

5.2.6 Multi-agent Systems in the Simulation of Social Phenomena

The method described above deals with the design process in terms of components

and the interactions between those components. In this light, multi-agent systems

are not considered specifically. However, in the context of simulating social

phenomena, it comes out naturally that in many instances the appropriate

“components” are the correlates of observed social actors. In other words it is

almost always overwhelmingly sensible to model the target system as a multi-agent

system, where agents in the model are representations of the actors (people, firms,

etc.) that are known to exist. In a sense, in the social sphere almost everything is an

agent, or conversely, agents are nothing special. It is simply that a component that is

naturally thought of as having elements of cognition (learning, reasoning etc.) is an

agent and will be endowed, as part of the simulation process, with many of the

attributes that agents are expected to have (and are discussed later in this chapter).

Representations of humans in a simulation will not include all aspects of cognition

but, dependent on the modelling goals, might well be much simpler. On the other

hand some non-human components, such as a firm, might be represented as an

agent, being able to learn, react, and reason in an agent-like way.

Simulations are growing in complexity, not in the least because agents are asked

to fulfil different roles over time, and to change their behaviour according to both

their own internal learning mechanisms and changing role descriptions. Within the
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described approach it has become good practice to first design the organisation, and

then the agents and their interaction in such a way that the agents realize the

organisation. The next section explicitly considers organisations. The chapter on

“Assessing Organisational Design” (Dignum 2013) follows the application of the

ideas that are described here.

5.3 Organisations

The organisational approach to simulation design takes the observed and inferred

organisational structures as the starting point and considers individual action and

agency at a later stage. This is particularly suitable for situations that seem to be

structured in this way, that is to say the roles and the requirements significantly

characterise and constrain individual action. Clearly in many observed cases there

is a complex mix of organisational constraint and emergence from individual action

so the decision to adopt a primarily organisational approach is a pragmatic one. In

many cases a mixture of organisation-based and agent-based approaches will be

necessary.

Societies are characterised by complex dynamics involving interaction between

many actors and groups of actors. If such complex dynamics take place in an

completely unstructured, incoherent manner, then the actors involved will probably

not be able to predict much, and not able to use and exploit any knowledge that they

have in a useful way. However in many social situations this is not the case, social

phenomena are full of structure, and even in initially unstructured situations social

actors will often quickly develop norms, rules, habits etc. – effectively creating

structure. Some sociologists (e.g. Luhman) have suggested that the purpose of

human institutional structure is to manage the complexity, in other words to

simplify social action and make planning possible. Organisational structure

provides co-ordination of the processes in such a manner that the agents involved

can function in a more adequate manner. The dynamics in many organisational

structures are much more dependable and understood than in apparently entirely

unstructured situations.

One key assumption of the organisational approach to simulation design is that

the organisational structure itself is relatively stable, i.e., the structure may change,

but the frequency and scale of change are assumed low compared to the more

standard dynamics through the structure. Within the field of Organisation Theory

such organisational structures regulating societal dynamics are studied (see e.g.

Kreitner et al. 2001; Mintzberg 1979). In summary, organisational structure is used
to help specify the dynamics (or organisational behaviour) of a desired type. A

crucial issue for further analysis is how exactly structure is able to affect dynamics.

A number of organisation modelling approaches have been developed to simu-

late and analyse dynamics within organisations in society (e.g. Ferber and

Gutknecht 1998; Hannoun et al. 1998, 2000; Hübner et al. 2002a b; Lomi and

Larsen 2001; Moss et al. 1998; Prietula et al. 1997). Some of these approaches
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explicitly focus on modelling organisational structure, abstracting from the detailed

dynamics. Other approaches put less emphasis on organisational structure but focus

on the dynamics in the sense of implementing and experimenting with simulation

models. Often these simulation models are based on some implementation environ-

ment and not specified in an implementation-independent manner using a formally

defined conceptual language. However, there are some exceptions to this where the

specification approach is supported by an implementation framework.2 The Agent/

Group/Role (AGR) approach (previously called Aalaadin) introduced in (Ferber

and Gutknecht 1998) is a good example of the organisational approach. It focusses

on organisational structure, abstracting from the details of the dynamics. It helps

define a formal relation between the dynamic properties and the organisational

structure (Ferber et al. 1999, 2000). The relevance for this chapter is that it shows

how dynamics of the organisational structure itself can be modelled: agents can

dynamically create, join, or quit groups. This is particularly relevant for simulating

situations where the organisational structure is somewhat fluid.

In this section the “dynamics specification” approach exemplified by AGR is

presented.3 The organisational structure is discussed and its parts defined. Then the

dynamics of the organisation is discussed in terms of dynamic properties that can be

associated to each element of the organisational structure. These dynamic

properties can help the simulation and analysis of empirical or simulated traces.

The various compositional levels within an organisation are related to the

organisational dynamics via a series of relationships. Finally, as a prerequisite to

realising an organisation the requirements of the agents are specified from their

roles within the organisation model.

5.3.1 Specification of Organisation Structure

In this approach, an organisation is viewed as a framework for activity and

interaction through the definition of groups, roles and their relationships. By

avoiding an agent-oriented viewpoint, an organisation is regarded as a structural

relationship between agents. In this way the organisation is described solely on the

basis of its structure, i.e. by the way groups and roles are arranged to form a whole,

without being concerned with the way agents actually behave. That is the systems

will be analysed from the outside, as a set of interaction modes. The specific

architecture of the agents is purposely not addressed in the organisational model.

2 The Strictly Declarative Modelling Language SDML (Moss et al. 1998) and the use of the agent-

oriented modelling approach DESIRE in social simulation as presented in (Brazier et al. 2001) are

two examples.
3 For more information on the use of AGR, see (Jonker and Treur 2003).
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The three primitive definitions are:

• The agents. The model places no constraints on the internal architecture of

agents. An agent is only specified as an active communicating entity which

plays roles within groups. This agent definition is intentionally general to allow

agent designers to adopt the most accurate definition of agent-hood relative to

their application. In other words, the specification of the agent is left as flexible

as possible, given the organisational constraints upon its roles.

• Groups are sets of agents. Each agent is part of one or more groups. In its most

basic form, the group is only a way to tag a set of agents. An agent can be a

member of several groups at the same time. A major point of these groups is that

they can freely overlap.

• A role is an abstract representation of an agent function, service or identification

within a group. Each agent can have multiple roles and each role handled by an

agent is local to a group. Roles could be assigned beliefs; that is, they could reason

about whether they should have a particular belief given a certain role. These

beliefs can be seen as an additional requirement on the agents playing that role.

Organisation structure is often show as a diagram (for example, as kind of

labelled graph; see Fig. 5.3 in Sect. 5.3.5) consisting of roles, groups, and

interactions, and of relationships between these elements.

Within AGR an organisation structure consists of a set of groups, the roles in

each group and the agents fulfilling those roles. To complete the picture

relationships between roles can be specified.

5.3.2 Organisation Structure

An AGR specification of an organisation structure is defined by the following:

groups, roles, (intergroup) interactions, transfers (intra-group interactions), which

roles are in which groups, the roles that are the source of interactions, the roles that

are the destination of interactions, the roles that are the source of transfers, and the

roles that are the destination of transfers. Transfers, under this scheme, are within a

group as opposed to interactions which may be between groups. Thus it is necessary

that the source and destination of all transfers belong to the same group. Although

intergroup interactions are defined above as between two roles, this can easily be

generalised to intergroup interactions involving more than two roles.

5.3.3 Dynamic Properties of an Organisation

After the foundation of an organisation structure has been defined, the foundations

for specification of dynamic properties in an organisation are addressed. The aim is

not only to cover simple types of dynamics, such as simple reactive behaviour, but
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also more complex dynamics, necessary for the simulation of realistic

organisations. The challenge here is to incorporate somehow the organisational

structure within the formal description of the organisation’s internal dynamics. To

this aim, the following approach is introduced:

For each element within the organisational structure characterise its dynamics by a

specific set of dynamic properties.

This is based on the structural relations between elements in an organisational

structure. Then:

Identify relationships between the sets of dynamic properties corresponding with

these elements;

In general, the dynamics of an element within an organisation structure can be

characterised by describing how the states of the elements change over time. For a

role the ‘state’ needs to include descriptions of for both the input and the output of

the role. Transfers and intergroup interactions are assumed to operate only on input

and output states of roles. These roles do not have their own internal state, so no

further state is needed to be described for such transfers and intergroup interactions.

An organisational structure defines relations between different elements in an

organisation. The dynamics of these different elements are characterised by their

dynamic properties. An organisational structure has the aim of keeping the overall

dynamics of the organisation manageable. For this reason the structural relations

between the different elements within the organisational structure have to somehow

impose constraints on or dependencies between their dynamics. Logical relations

defined between sets of dynamic properties allow the use of logical methods to

analyse, verify and validate organisation dynamics in relation to organisation

structure. Within AGR organisation models three aggregation levels are involved:

• The organisation as a whole (the highest aggregation level)

• The level of a group

• The level of a role within a group

A general pattern for the dynamics in the organisation as a whole in relation to

the dynamics in groups is as follows:

Dynamic properties for the groups AND dynamic properties for intergroup role
interaction

⇨ Dynamic properties for the organisation

Moreover, dynamic properties of groups can be related to dynamic properties of

roles as follows:

Dynamic properties for roles AND dynamic properties for transfer between roles
⇨ Dynamic properties for a group

The idea is that these are properties dynamically relating a number of roles

within one group.
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An overview of the logical relationships between dynamic properties at different

aggregation levels is depicted as an AND-tree in Fig. 5.1.4

To define states the notion of state property is useful. The notion of trace as a

sequence of states over a time frame is used to formalise the dynamics. To formally

specify dynamic properties that are essential in an organisation, an expressive

language is needed. One can do this using a formal language,5 however in this

chapter this will not be used to retain its accessibility.

We distinguish five kinds of dynamic properties that might be described during a

specification (or at least thought about). Not all of these are always necessary. A

summary of them is displayed in Table 5.1.

5.3.3.1 Role Dynamic Properties

The role dynamic properties relate input to output of that role. This is a subset of the
dynamic properties of that role; it is a concern of that role only. For example, the

gossip role behaviour: ‘whenever somebody tells you something, you will tell it to

everybody else’ is expressed in terms of input of the role leading to output of the

role in a reactive manner.

Fig. 5.1 Overview of inter-

level relations between

dynamic properties within an

AGR organisation model

Table 5.1 Types of dynamic

properties for an AGR

organisation model

Property type Relating

Role r Role r input Role r output

Transfer from r1 to r2 Role r1 output Role r2 input

Group G Input or output of roles in G

Intragroup interaction Role r1 output Role r2 output

Intergroup interaction Role r1 input Role r2 output

Organisation Input or output of roles in O

4 For formalisation details of the logical relationships put forward above, see (Jonker and Treur

2003).
5 E.g. the Temporal Trace Language (TTL), which defines the dynamics in terms of a “leads to”

relation (Jonker et al. 2001). A specification of dynamic properties in leads to format has as

advantages that it is executable and that it can often easily be depicted graphically.
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5.3.3.2 Transfer Dynamic Properties

Transfer properties relate output of the source roles to input of the destination roles.

That is they represent the dynamic properties of transfers from one role to another.

Typically, these sets contain properties such as: information is indeed transferred

from source to destination, transfer is brought about within x time, arrival comes

later than departure, and information departs before other information also arrives

before that other information.

5.3.3.3 Group Dynamic Properties

Group dynamic properties relate input and/or output of roles within a group, it

relates the roles within the group. An example of a group property is: “if the

manager asks anyone within the group to provide the secretary with information,

then the secretary will receive this information”.

A special case of a group property is an intragroup interaction relating the

outputs of two roles within a group. A typical (informal) example of such an

intragroup interaction property is: “if the manager says ‘good afternoon’, then the

secretary will reply with ‘good afternoon’ as well”. Other examples may involve

statistical information, such as “3 out of the 4 employees within the organisation

never miss a committed deadline”.

5.3.3.4 Intergroup Interaction Dynamic Properties

Intergroup interaction properties relate the input of the source role in one group to

the output of the destination role in another group. Note that intergroup interaction

is specified by the interaction of roles within the group, and not the groups

themselves. Sometimes there are specialist roles for such intergroup interaction.

For example, a project leader is asked by one of the project team members (input of

role ‘project leader’ within the project group) to put forward a proposal in the

meeting of project leaders (output of role ‘member’ within the project leaders

group).

5.3.3.5 Organisation Dynamic Properties

Organisation dynamic properties relate to input and/or output of roles within the

organisation. A typical (informal) example of such a property is: “if within the

organisation, role A promises to deliver a product, then role B will deliver this

product”.

The different types of dynamic properties all relate to different combinations of

input and output. Table 5.1 provides an overview of these combinations. Note that

with respect to simulation, the above dynamics definition can contain elements that
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are redundant: a smaller subset of dynamical properties could form an executable

specification of the dynamics of an AGR type organisation – not all of the above are
always needed.

For example, an organisation could be simulated on the basis of the role dynamic

properties, the transfer dynamic properties and the intergroup interactions. The

group dynamic properties, including the intragroup role interaction properties, and

the organisation properties should emerge in the execution. However specifying

them in advance can be used to check what is expected and help verify the

simulation.

In order to make an executable organisation model the dynamical properties

need to be chosen from those properties that can be executed.

5.3.4 Organisation Realisation

In this section criteria are discussed when allocation of a set of agents to roles is

appropriate to realize the organisation dynamics, illustrated for the AGR approach.

One of the advantages of an organisation model is that it abstracts from the specific

agents fulfilling the roles. This means that all dynamic properties of the

organisation remain the same, independent of the particular allocated agents.

However, the behaviours of these agents have to fulfil the dynamic properties of

the roles and their interactions that have been already specified. The organisation

model can be (re)used for any allocation of agents to roles for which:

• For each role, the allocated agent’s behaviour satisfies the dynamic role

properties,

• For each intergroup role interaction, one agent is allocated to both roles and its

behaviour satisfies the intergroup role interaction properties, and

• The communication between agents satisfies the respective transfer properties.

To satisfy the relationships specified above there needs to be a relevant overlap

between the agent’s ontologies and the role ontologies,6 i.e. there must be some

common referents so that the interactions of the agents are well defined with respect

to their roles. Moreover, note that if one agent performs two roles in the group then

dynamic properties of communication from itself to itself are required, i.e. that it

will receive (at its input state) what it communicates (at its output state): ‘it hears

itself talking’. The logical relationships can be depicted as in the extension of

Fig. 5.1 shown as Fig. 5.2.

Alternatively, if the roles in an intergroup interaction would not be fulfilled by

one agent, but by several, this would create a mystery, since input to one agent

creates output for another agent, even though the agents are not connected by any

6 For a more detailed discussion on this issue, see (Sichman and Conte 1998).
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transfer since the roles they fulfil are from separate groups. This would suggest that

the organisation structure is not complete. The whole idea of specifying the

organisational approach through roles is that all communication and interaction is

somehow made explicit – in an AGR organisation model it is assumed that the roles

in an intergroup interaction are fulfilled by one agent.

5.3.5 Organisational Example

Here the organisational approach to simulation specification is illustrated. This

shows how an organisation that is the target of simulation can be analysed into

groups, roles and processes. This analysis can then be the basis for the design of the

simulation implementation and finally its code. As described this is essentially a

top-down analytic approach (in contrast to the more bottom-up agent approach

described at the end of this chapter).

In this example, a factory and some of its components are considered. This

factory is organised at the highest level according to two divisions: the division that

produces certain components (division A) and the division that assembles these

components into products (division B). At the lower level, division A is organised

in two departments: the work planning department for division A (dep. A1) and the

component production department (dep. A2). Similarly, division B is organised in

two department roles: one for assembly work planning (dep. B1) and one for

product production (dep. B2). This example is illustrated in Fig. 5.3.

Here the two divisions are modelled as groups (depicted by the larger ovals),

with the departments as their roles (depicted by smaller ovals within larger ones). A

third group, the Connection Group C, models the communication between the two

divisions. This group consists of the two roles ‘division A representative’ and

‘division B representative’. Intergroup role interactions (depicted by pairs of

dashed lines) are modelled between the role ‘department A1’ in the division A

Fig. 5.2 Inter-level relations

between dynamic properties

for a realised organisation

model
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group and the role ‘division A representative’ within the connection group, and

between the role ‘department B1’ in the division B group and the role ‘division B

representative’ within the connection group. Intragroup role transfers model com-

munication between the two roles within each of the groups (depicted by the

arrows).

Connections have destination roles (indicated by the arrow points) and source

roles (where the arrow originates). Based on the semantic structures of many-sorted

predicate logic a more precise formal definition is the following.

5.3.5.1 Groups and Roles in Organisational Example

The example has the following groups, roles, and relationships between them:

• Groups ¼ {divA, divB, C},

• Roles ¼ {depA1, depA2, depB1, depB2, divArep, divBrep},

• Intergroup_interactions ¼ {iAC, iCA, iBC, iCB}

• Transfers ¼ {tA12, tA21, tB12, tB21},

• Some of the relationships are:

Within divA Organisation level

Role_in(depA1, divA) Source_of_interaction(divA, iAC)

Role_in(depA2, divA) Destination_of_interaction(C, iAC)

Source_of_transfer(depA1, tA12) Source_of_interaction(C, iCA)

Destination_of_transfer(depA2, tA12) Destination_of_interaction(divA, iCA)

Source_of_transfer(depA2, tA21)

Destination_of_transfer(depA1, tA21)

Connection Group C

Group divBGroup divA

divA rep divB rep

dep A1 dep A2 dep B1 dep B2

Fig. 5.3 Organisational example. The smaller ovals indicate roles, the bigger ovals groups.

Connections are indicated by the two types of lines (dashed indicates an intergroup interaction,

solid arrow indicates a transfer). Membership of a role to a group is indicated by drawing the

smaller role oval within the bigger group oval
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5.3.5.2 Dynamic Properties in Organisational Example

To get the idea, consider the special case of an intragroup role interaction from role

r1 to role r2, characterised by dynamic properties that relate output of one role r1 to

output of another role r2. Assuming that transfer from output of r1 to input of r2 is

adequate and simply copies the information, this property mainly depends on the

dynamics of the role r2. Therefore in this case the relationship has the form:

Dynamic properties for role r2 AND
Dynamic properties for transfer from role r1 to role r2
⇨ Dynamic properties of intragroup interaction from r1 to r2

Role Dynamic Properties

DP(depA1) Progress Information Generates Planning in depA1

If within division A department A1 receives progress information on component

production,then an updated planning will be generated by department A1 taking

this most recent information into account.

Group Dynamic Properties

DP(A) A Progress Information Generation

This property is the conjunction of the following two properties.

DP1(A) Initial A Progress Information Generation

Department A1 receives initial progress information on component production

processes, involving already available components.

DP2(A) Subsequent A Progress Information Generation

Within the division A group, for any component production planning gene-

rated by department A1, incorporating a specific required set of components,

progress information on the production of these components will be received by

department A1.

Intergroup Interaction Dynamic Properties

Intergroup Role Interaction between A and C: IrRI(A, C)

For the connectivity between the groups A and C, the following intergroup role

interaction properties are considered, one from A to C, and one from C to A.

IrRI(depA1, divArep) Progress Information Provision A to B
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If within division A progress information on component production is received

by department A1, then within the connection group this will be communicated by

the division A representative to the division B representative.

IrRI(divArep, depA1) B Progress Information Incorporation by A

If within the connection group the division A representative receives informa-

tion from the division B representative on which components are needed, then

within division A a component production planning will be generated by depart-

ment A1 taking these into account.

Organisational Dynamic Properties

DP(F) Overall Progress Notification

If a request for a product is made (by a client), then progress information will be

provided (for the client).

Realisation

The following allocation of agents agentA1, agentA2, agentB1, agentB2 to roles is

possible:

agentA1 – depA1 agentB1 – depB1 agentA1 – divArep

agentA2 – depA2 agentB2 – depB2 agentB1 – divBrep

To realise the organisation model, for example agentA1 has to satisfy the

following dynamic properties:

DP(agentA1)
If agent A1 receives progress information on component production,
Then an updated planning will be generated by agent A1 taking this most recent

information into account.
IrRI(agentA1)
If progress information on component production is received by agent A1,
Then this will be communicated by agent A1 to agent B1
If agent A1 receives information on which components are needed,
Then a component production planning will be generated by agent A1 taking

these components into account

5.3.5.3 Conclusion of Organisational Example

One can see how the above analysis is getting us closer to the implementation of a

simulation of this organisation. Given details of an organisation this could continue
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down the organisational structure. Clearly this kind of analysis is more appropriate

when the structure of the organisation is known, and much less appropriate when

the structure is only partially known or, indeed, emergent. However, even in those

cases it could guide the documentation capturing how and which aspects of an

organisation’s official structure was translated into a simulation.

5.4 Organisation Design by Requirements Refinement

The previous sections address the question of how the structure and the behaviour

of a given organisation can be modelled. This section takes the design perspective.

This perspective does not assume a given organisation, but aims at creating a new

organisation in silica. Whilst on the whole in simulation we are aiming to capture

aspects of existing organisations one might want to design one in a number of

circumstances.

For example, one may not know the internal structure of an organisation which is

part of the system one is trying to model but only how it communicates or relates to

the actors around it. In this case to get the simulation to run one would have to

invent the organisation. Obviously the danger in this case is that the organisational

structure that is chosen might subtly affect how it interacts with other agents and

thus have an impact upon the simulation outcomes. However in some cases the

internal workings of an organisation are effectively insulated from how it interacts

with the outside world by regulation and self-interest – in these cases one might

well have no choice but to invent its workings on the basis of its external constraints

and common knowledge of how such things are arranged.

Another case is where one is not attempting to represent anything that is

observed but rather exploring the space of possible organisations. For example

one might wish to know which of several possible organisational structures might

be best according to some specified criteria. Such “artificial societies” or “thought

experiments” are reasonable common, however their relevance is questionable. If a

small change in the environment or other aspect (e.g. reliability of internal commu-

nication) means that what was a good organisational structure now fails, then the

results of such artificial studies are difficult to apply to other cases. In other words

the general applicability of such studies is hard to establish. On the other hand if one

has a good knowledge of the environment and characteristics where the results of

the simulation experiments are to be applied and one does extensive ‘what if’

experiments testing the robustness of the designs to such small changes then this

can be a helpful way forward.

Such an design process starts by specifying requirements for the overall

organisation behaviour. The requirements express the dynamic properties that

should ‘emerge’ if appropriate organisational building blocks, such as roles, groups,

transfers, group interactions, role behaviours, and so on, are glued together in an

appropriate manner in an organisation model. In addition, other requirements on

behavioural and structural aspects of the organisation to be created may be
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imposed. Given these requirements on overall organisation behaviour (and, per-

haps, some additional requirements), organisational structure and organisational

behaviour are designed in such a manner that the requirements are fulfilled. The

approach described in this section is the method of requirements refinement, which

is illustrated for an example.

5.4.1 Designing by Requirements Refinement

In Sect. 5.3.3 a scheme for specifying the dynamic properties and relationships at

different levels of aggregation was described; overall organisational behaviour can

be related to dynamic group properties and group interaction properties via the

following pattern:

Dynamic properties for the groups AND dynamic properties for group interaction
⇨ Dynamic properties for the organisation

This scheme is also useful for the design perspective. Consider a design problem

for which the requirements of the overall behaviour are given in the form of

dynamic properties. This scheme says that to fulfil these overall dynamic

properties, dynamic properties of certain groups and group interactions together

imply the organisation behaviour requirements. This process is called requirements
refinement in that the requirements for the whole organisation are reduced to that of

its constituent groups and the interactions between these groups. It thus provides a
new, refined set of requirements in terms of the behaviour of groups and group

interaction.

Clearly if one has a multi-level organisation with component sub-organisations

as well as groups one has a choice as to how best to fill in the detail of one’s design.
One can decide to reduce it first to the behaviour of its constituent groups but it is

also possible to first refine requirements for the behaviour of the organisation as a

whole to the requirements on the behaviour of parts of the organisation, before

further refinement is made to refinements for groups. In each case this is a

pragmatic decision and will depend on the organisation being designed.

Subsequently, the required dynamic properties of groups can be refined to

dynamic properties of certain roles and transfers, making use of:

Dynamic properties for roles AND dynamic properties for transfer between roles
) Dynamic properties for a group

This provides requirements on role behaviour and transfer that together imply

the requirements on the behaviour of the group. Again it is possible to first refine

requirements on the behaviour of a group to requirements of the behaviour of parts

of the group, before further refinement to role behaviour requirements is made,

depending on what is best in each case.

An overview of the inter-level relationships between these dynamic properties at

different aggregation levels is depicted in Fig. 5.1, repeated for your convenience
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here as Fig. 5.4. In summary, from the design perspective, a top-down refinement
approach can be followed. That is, the requirements on overall organisational

behaviour can be first refined to requirements on behaviour of groups and group

interaction, and then the requirements on behaviour of groups can be refined to

requirements on roles and transfers. Notice that as part of this refinement process

the organisational structure (e.g., the groups and roles) is defined.

A design problem statement consists of:

• A set of requirements (in the form of dynamic properties) that the overall

organisational behaviour has to fulfil

• A partial description of (prescribed) organisational structure that has to be

incorporated

• A partial description of (prescribed) dynamic properties of parts of the

organisation that have to be incorporated; e.g., for roles, for transfers, for groups,

for group interactions.

A solution specification for a design problem is a specification of an organisation

model (both structure and behaviour) that fulfils the imposed requirements on

overall organisation behaviour, and includes the given (prescribed) descriptions

of organisation structure and behaviour. Here ‘fulfilling’ the organisation behaviour

requirements means that the dynamic properties for roles, transfers, and group

interactions within the organisation model imply the behaviour requirements.

In specific circumstances, part of the organisational structure and/or behaviour

may already be prescribed by requirements. For example, the organisational struc-

ture may already be prescribed; in such a case only the organisation dynamics is

designed, for the given organisational structure. Other, more specific cases are, for

example, role behaviour design and interaction protocol design.

5.4.1.1 Role Behaviour Design

For role behaviour design the organisational structure and the transfers and

interactions are completely prescribed. However, appropriate dynamic properties

for the different roles have yet to be found, to satisfy the requirements for the

organisation properties  

 group interaction
properties 

group properties  

transfer properties  role properties  

Fig. 5.4 Overview of

interlevel relationships

between dynamic properties

within an organisation model
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organisational behaviour that are imposed; see Fig. 5.5. Here (and in Fig. 5.6) the

grey rectangles indicate what is already given as prescribed and the transparent

rectangle what has to be designed.

5.4.1.2 Interaction Protocol Design

For interaction protocol design the organisational structure and role dynamics are

completely prescribed, but appropriate transfer and interaction dynamics have to be

found to satisfy given requirements for the organisational behaviour that are

imposed; see Fig. 5.6.

5.5 The Agent Approach

The agent approach is contrary to the organisational approach. It starts with the

agents and its properties and attempts to work upwards towards the whole system.

This is more useful in situations where the “top down” social constraints upon

action are weak or non-existent, and it is the “upwards” emergence of outcome from

the many micro-level interactions that is more important. Clearly, if one was in a

situation where top down social and/or organisational constraints were severe then

organisation properties  

 group interaction
properties 

group properties  

transfer properties  role properties  

Fig. 5.5 Role behaviour

design

organisation properties

group interaction
properties

group properties

transfer properties role properties

Fig. 5.6 Organisation design
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one would have no guarantee that working bottom-up in this manner one would be

able to meet those constraints at the higher levels of the structure. It would be like

trying to organise the production of a kind of car by the random meeting of people

with particular parts and skills without any planning. However, especially in the

development of new social structure such “bottom-up” processes can be crucial, so

that the agent approach can be appropriate for investigating such issues. Often, for

social phenomena some mix of both approaches is necessary, first a bit of one, then

a bit of the other etc.

5.5.1 Some Agent Notions

The term agent has been used for a wide variety of applications, including: simple

batch jobs, simple email filters, mobile applications, intelligent assistants, and

large, open, complex, mission critical systems (such as systems for air traffic

control).7 Some of the key concepts concerning agents lack universally accepted

definitions. In particular, there is only partial agreement on what an agent is. For

example, simple batch jobs are termed agent because they can be scheduled in

advance to perform tasks on a remote machine, mobile applications are termed

agent because they can move themselves from computer to computer, and intelli-

gent assistants are termed agents because they present themselves to human users as

believable characters that manifest intentionality and other aspects of a mental state

normally attributed only to humans. Besides this variety in different appearances of

agents, the only precise description of the agents involved is their implementation

code. As a result, existing agent architectures are only comparable in an informal

manner – just because something is called an agent-architecture or an agent does

not mean that it is suitable for simulating a human or social actor. Especially if the

goal of the agent-based system is a complex simulation, a principled, design-

oriented description of the organisation, and of the agents in it at a conceptual

and logical level is of the essence, since the control, testing, verification and

validation of such complex simulations is an issue. Spending time on a more formal

and staged approach to simulation design can make life a lot easier later. Due to the

organisational nature, and the complexity of intelligent agents and their interaction,

a more formal compositional design method for agents is necessary.

As agents show a variety of appearances, perform a multitude of tasks, and their

abilities vary significantly, attempts have been made to define what they have in

common. The weak notion of agent is seen as a reference. The weak notion of agent
is a notion that requires the behaviour of agents to exhibit at least the following four

types of behaviour:

7Many of the notions discussed in this and the following section are adopted from (Wooldridge

and Jennings 1995), (Nwana 1996), (Nwana and Ndumu 1998) and (Jennings and Wooldridge

1998).
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• Autonomous behaviour

• Responsive behaviour (also called reactive behaviour)

• Pro-active behaviour

• Social behaviour

Autonomy relates to control: although an agent may interact with its environ-

ment, the processes performed by an agent are in full control of the agent itself.

Autonomous behaviour is defined as:

. . . where the system is able to act without the direct intervention of humans (or other

agents) and should have control over its own actions and internal state.

This means that an agent can only be requested to perform some action, and:

The decision about whether to act upon the request lies with the recipient.

Examples of autonomous computer processes are: process control systems (e.g.,

thermostats, missile guiding systems, and nuclear reactor control systems), soft-

ware daemons (e.g., one that monitors a user’s incoming email and obtains their

attention by displaying an icon when new, incoming email is detected), and

operating systems.

Many processes that exhibit autonomous behaviour are called agents. However,

if such agents do not exhibit flexible behaviour, they are not, in general, considered

to be intelligent agents. An intelligent agent is a computer system that is capable of

flexible autonomous actions in order to meet its design objectives – indeed Randall

Beer (1990) defined intelligence as “the ability to display adaptive behaviour”.

Intelligence requires flexibility with respect to autonomous actions, meaning that

intelligent agents also need to exhibit responsive, social, and pro-active behaviour.

An agent exhibits responsive (or reactive) behaviour if it reacts or responds to
new information from its environment. Responsive behaviour is where:

Agents perceive their environment (which may be the physical world, a user, a collection of

agents, the Internet, etc.) and respond in a timely fashion to changes that occur in it.

A barometer is a simple example of a system that exhibits responsive behaviour:

It continually receives new information about the current air pressure and responds

to this new information by adjusting its dial.

Pro-active behaviour is where:

Agents do not simply act in response to their environment, but are be able to exhibit

opportunistic, goal-directed behaviour and take the initiative where appropriate.

Pro-active behaviour in some sense is the most difficult of the required types of

behaviour for an agent defined according to the weak agent notion. For example,

pro-active behaviour can occur simultaneously with responsive behaviour. It is

possible to respond to incoming new information in an opportunistic manner

according to some goals. Also initiatives can be taken in response to incoming

new information from the environment, and thus this behaviour resembles respon-

sive behaviour. However, it is also possible to behave pro-actively when no new
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information is received from the environment. This last behaviour can by no means

be called responsive behaviour.

An agent exhibits social behaviour if it communicates and co-operates with

other agents. Jennings and Wooldridge define social behaviour as when:

Agents are able to interact, when they deem appropriate, with other artificial agents and

humans in order to complete their own problem solving and to help others with their

activities.

An example of an agent that exhibits social behaviour is a car: it communicates

with its human user by way of its dials (outgoing communication dials: speed,

amount of fuel, temperature) and its control mechanisms (incoming communication

control mechanisms: pedals, the steering wheel, and the gears). It co-operates with

its human user, e.g., by going in the direction indicated by the user, with the speed

set by that user.

Agents can also be required to have additional characteristics. Here three of

these characteristics are discussed: adaptivity, pro-creativity, and intentionality.

Adaptivity is a characteristic that is vital in some systems. An adaptive agent

learns and improves with experience. This behaviour is vital in environments that

change over time in ways that would make a non-adaptive agent obsolete or give it

no chance of survival. This characteristic is modelled in simulations of societies of

small agents, but also, for example, in adaptive user interface agents.

Pro-creativity is of similar importance to find agents that satisfy certain

conditions. The chance of survival is often measured in terms of a fitness function.

This characteristic is found in various simulations of societies of small agents (see

the literature in the area of Artificial Life). A computer virus is an infamous form of

a pro-creative agent.

An intentional system is defined by Dennett to be an entity

. . . whose behaviour can be predicted by the method of attributing beliefs, designs and

rational acumen.

Mentalistic and intentional notions such as beliefs, desires, intentions,
commitments, goals, plans, preference, choice, awareness, may be assigned to

agents. The stronger notion of agenthood, in which agents are described in terms

of this type of notions, provides additional metaphorical support for the design of

agents.

5.5.2 Representative Agents

Of course a software agent need not have all the characteristics of something it

represents. Thus, depending on the model purpose, it is quite possible to represent

an intelligent actor by a relatively simply object, that might not even be meaning-

fully called an agent. For example, if simulating the movement of a crowd or traffic,

it might not be necessary to include much, if any, of the features discussed above.
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So sometimes something is called an agent because it represents an agent, but this

usage conflates what is being modelled and the model, which may cause confusion.

How and when it is necessary to include the various features that are known about

the actor being modelled in the model is a crucial modelling question. However it is

not a question to which there is a general answer since this goes to the heart of the

difficulty of making sense of the complexity that we observe.

The power of the agent idea and approach to programming, clearly comes from

the apparent efficacy of observed social actors that seem to be able to organise

themselves in useful and adaptive ways, that they have the characteristics listed

above. This differs qualitatively from more traditional computer science

approaches to programming. It also comes from the power of the analogy with

humans to guide the direction of programming – we have a deep mundane knowl-

edge of how humans work (c.f. Dennett 1996) and this can help in design decisions,

for example whether a certain feature or ability is necessary to model a particular

social system. In this sense the idea of an agent can be thought of as a stance, in

comparison to the “intentional” stance mentioned above – it may be useful to think

of a computational object as an agent, having some of the sort of properties we

know real human actors have. However there are clearly more and less useful

applications of this stance: I may think of a light switch as an agent, but it has

limited usefulness in terms of understanding or modelling it. In the contrary

direction on can think of a fully autonomous and intelligent agent such as a

human as a merely a physical particle for some circumstances, however this is

open to question, depending upon the purpose and target of the exercise. Clearly, in

many circumstances and for many purposes, treating complex social actors as if

they were simple (for example acted upon in the manner of a simple linear influence

plus some randomness) is insufficient since individual complexity can impinge

upon the social complexity that results.

5.5.3 Agent Properties

The notions of agency discussed above are highly abstract notions. In order to

design agents, it is necessary to be familiar with a number of primitive agent

concepts.8 These primitive concepts serve as an ontology or vocabulary used to

express analyses and designs of applications of agents and multi-agent systems.

Two classes of primitive notions are distinguished: those used to describe the

behaviour of agents in terms of their external (or public) states and interactions

(Sect. 5.5.3.1), and those used to describe the behaviour of agents in terms of their

internal (or private) states, and processes (Sect. 5.5.3.2). To illustrate these

concepts, some example agents are discussed in Sect. 5.5.4.

8 The material in this section is based on (Brazier et al. 2000).
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5.5.3.1 External Primitive Concepts

Two types of interaction of an agent with its environment are distinguished,

depending on whether the interaction takes place with an agent or with something

else (called an external world), for example a database, or the material world. For

each of these two types of interaction specific terminology is used.

Interaction with the External World

Two primitive types of interaction with the external world are distinguished. The

first type of interaction, observation, changes the information the agent has about

the world, but does not change the world state itself, whereas the second type,

performing an action, does change the world state, but does not change the

information the agent has about the world. Combinations of these primitive types

of interaction are possible; for example, performing an action, and observing its

results.

Observation

In which ways is the agent capable of observing or sensing its environment? Two

types of observation can be distinguished: the agent passively receives the results of

observations without taking any initiative or control to observe (passive observa-
tion), or the agent actively initiates and controls which observations it wants to

perform; this enables the agent to focus its observations and limit the amount of

information acquired (active observation).

Execution of Actions in the External World

An agent may be capable of making changes to the state of its environment by

initiating and executing specific types of actions.

Communication with Other Agents

Two directions of communication are distinguished, which can occur together:

outgoing communication (is the agent capable of communicating to another

agent; to which ones?), and incoming communication (is the agent capable of

receiving communication from another agent; from which ones?).
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5.5.3.2 Internal Primitive Concepts

A description in terms of the external primitive concepts abstracts from what is

inside the agent. In addition to descriptions of agents in terms of the external

concepts, descriptions in terms of internal concepts are useful. The following

internal primitive agent concepts are distinguished.

World and Agent Models

An agent may create and maintain information on (a model of) external world based
on its observations of that world, on information about that world communicated by

other agents, and its own knowledge about the world. The agent may also create and

maintain information on (models of) other agents in its environment based on its

observations of these agents as they behave in the external world, on information

about these agents communicated by other agents, and knowledge about the world.

Self Model and History

Some agents create and maintain information on (a model of) their own

characteristics, internal state, and behaviour. Or the agent creates and maintains a

history of the world model, or agent models, or self model, or own and group

processes.

Goals and Plans

To obtain pro-active, goal-directed behaviour, an agent represents, generates, and

uses explicit goals and its own plans of action in its processing.

Group Concepts

Besides individual concepts, agents can use group concepts that allow it to

co-operate with other agents. For example, joint goals: is the agent capable of

formulating or accepting and using goals for a group of agents, i.e., goals that can

only be achieved by working together? Or joint plans: is the agent capable of

representing, generating, and using plans of action for joint goals, i.e., involving

which actions are to be performed by which agents in order to achieve a certain joint

goal? Also commitments to joint goals and plan, negotiation protocols and

strategies can be useful group concepts for agents, depending on their role and

function.
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5.5.4 Example of the Agent Approach: An Elevator

Let us illustrate the agent concepts introduced above by an example: an elevator is

analysed from the agent perspective using these basic concepts (Table 5.2). This

might be an element in the simulation of how people move around a building. The

advantage of using an elevator as an example is that it does interact with users as an

agent, but it is well known and simple enough to make a clear example of

specifying an agent using the agent-oriented approach.

5.5.4.1 External Primitive Concepts (Table 5.2)

Observation

Observations are performed continually. However, it receives passive observation

results on the presence of objects between the doors (an optical sensor), the total

weight of its contents, and its position in the building (at which floor). Besides it is

able to perform active observation: the presence of objects between the doors

(a mechanical sensor which is moved in the door opening just ahead of the doors

themselves).

Table 5.2 External primitive concepts for an elevator

External primitive concepts Elevator

Interaction with the world

Passive observations Presence of objects between doors (optically)

Total weight

Its position

Active observations Presence of objects between the doors

(mechanically)

Performing actions Moving

Opening and closing doors

Communication with other agents

Incoming communication From users in the elevator

Where they want to go (pushing button in elevator)

From users outside

Where they want to be picked up (pushing button

outside elevator)

Outgoing communication To users in the elevator

Where we are (display)

There is overweight (beep)

To users outside

Where is the elevator (display)

In which direction it moves (display)
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Performing Actions

Its actions are moving itself (and people) vertically from one position to another and

opening and closing doors.

Incoming Communication

The elevator receives communication from users by buttons that have been pressed

outside (to call the lift and indicate the direction they wish to go in) and inside the

lifts (providing information about the floor to which they wish to be transported).

Outgoing Communication

The elevator communicates to a user by indicating which floor the lift is on (both

inside and outside the lifts) and sounding beeps (information about overload)

(Table 5.2).

5.5.4.2 Internal Primitive Concepts (Table 5.3)

World and Agent Models

Elevators know where they are, to do this they keep track of which floor they are on

based on their actions (going two floors up, going one floor down) they perform.

Table 5.3 Internal primitive concepts for an elevator

Internal primitive concepts Elevator

World model The current floor, max load, current load

Agent models A user wants to be picked up from floor X

A user wants to go to floor Y

Self model When maintenance is next due

History When maintenance was last performed

Goals To go to floor X to pick up somebody

To go to floor Y to deliver somebody

Plans The order in which the required floors are visited

Sometimes: the speed that is taken

Group concepts

Joint goals With other elevators to transport people and

goods as efficiently as possible

Joint plans Some elevators are capable of distributing the work

Commitments The elevators then commit to their part of the work

Negotiation protocol To reach a good distribution, they may have to negotiate

Negotiation strategies To reach a good distribution, they may have to negotiate
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Furthermore, the elevator knows if the weight in the lift is over its maximum limit.

The agent information of the user goals (where they want to go) may be maintained

as well.

Self Model and History

The agent does not know what actions it previously performed to perform its

current task. It might have an explicit representation of when it has last received

maintenance.

Goals and Plans

Modern elevators make use of the explicit goals (adopted from the goals

communicated by the users). The goals are used to determine which actions to

perform. They may even make plans for reaching these goals: determine the order

of actions, for example when one of the users has the goal to be at a higher floor and

another on a lower floor.

Group Concepts

The elevator co-operates with its users. The elevator might also be designed to co-

operate with other elevators so that they could strategically distribute themselves

over the floors. The goals adopted from the goals communicated by the users are

joint goals (joint with the users), and sometimes even joint with the other elevators.

Modern elevators are capable of distributing the work load, and thus of making joint
plans. To achieve the joint goals an elevator must commit to its part of the work as

specified in the joint plans. To make a joint plan, the elevators might negotiate using

a particular strategy as to which elevator goes where. Negotiation is only possible if
a negotiation protocol is followed.

Table 5.4 Types of behaviour for an elevator

Types of behaviour Elevator

Autonomy Yes

Responsiveness In reaction to user requests

In immediate reaction to observed objects between the doors

Pro-activeness Taking the initiative to go to a normally busy floor, if empty

and not being called by a user

Social behaviour Co-operation with users, and, sometimes, with other elevators

Own adaptation and learning Often not possible
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5.5.4.3 Types of Behaviour (Table 5.4)

Autonomy

As soon as it is activated, no system or human is controlling its machinery, and

(normally) it is not switched off and on by the user. The elevator has full control of

its motor, doors, and lights.

Pro-activeness

The simplest elevators stay where they are (some take the initiative to close their

doors) when no longer in use, but more intelligent elevators go to a strategic floor

(e.g., the ground floor).

Reactiveness

The elevator reacts to the immediate stimuli of buttons pressed, therefore, it is

shows reactive behaviour. People often have to wait for the elevator as the elevator

picks up people on other floors, however, the elevator does not forget a signal and

will, eventually, come to the requested floor.

Social Behaviour

The elevator co-operates with users and, sometimes, with other elevators.

Own Adaptation and Learning

Simple elevators are not capable of adjusting their own behaviour to new situations,

nor are they capable of learning. However, it is possible to conceive of more

intelligent elevators that can learn the rush hours for the different floors.

5.5.4.4 Conclusion of Elevator Example

One can see that the above analysis has clarified what is needed to implement a

model of this element within a simulation. The objects, properties and processes of

the simulation code is an easy step from here. One also sees that some of the

complexities of the agent have been considered before the implementation starts, in

this way cleaner and more maintainable code might be produced, fewer mistakes
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made in the implementation and some of the complexities in terms of user-lift

interaction considered and anticipated. Of course in the case of simulating a human

agent there are likely to be many unknowns in terms of their goals, group concepts

etc. – unless the simulators simply add in their informed guesses they will have a

considerable job finding evidence to guide them in the answers to fill in within such

an analysis. Thus this kind of analysis is not a total solution when simulating

complex social actors whose attributes and internal states may be largely unknown.

5.6 Conclusion

More formal approaches to simulation design can help make complex

implementations manageable and can probably save one time in the longer-run. It

also makes the simulation easier to check, validate, re-implement and further

develop. These approaches do this in a three principled ways. Firstly, by encourag-
ing the more complete documentation of the intentions and decisions of a designer/

implementer. One can see a lot of this chapter as a check-list of all the aspects one

might think about and record. Secondly, it helps encourage doing this in an explicit

and exact manner. We have not displayed some of the formal notation that can be

used in this chapter, since we did not want to overwhelm the reader, however for

those who wish to utilise this style of design to the fullest will naturally find them

themselves adopting a variety of formal languages and diagrams in pursuit of

precision. Thirdly, it suggests a method by which a complex specification can be

iteratively refined from abstract and high-level entities towards a detailed imple-

mentation. In this way the design decisions do not all have to be made simulta-

neously but can be made in stages.

Further Reading

For readers interested in software engineering approaches Bergenti et al. (2004)

give a thorough introduction to and overview of current methodologies. Gilbert and

Terno (2000) offer suggestions on techniques for building and structuring agent-

based simulation models, particularly geared towards use in the social sciences.

In addition to methodologies, a lot of work has been done in the development of

programming languages and platforms to support the implementation of multi-

agent systems and models. Bordini et al. (2010) focus on a comprehensive presen-

tation of MAS programming, including four approaches that are based on formal

methods, whereas Railsback et al. (2006) provide a review of platforms for agent-

based simulations.
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